JUC线程池
- JUC线程池: FutureTask详解
- JUC线程池: ThreadPoolExecutor详解
- JUC线程池: ScheduledThreadPool详解
- JUC线程池: Fork/Join框架详解
# FutureTask
# 1、FutureTask用来解决什么问题的? 为什么会出现?
FutureTask 为 Future 提供了基础实现,如获取任务执行结果(get)和取消任务(cancel)等。如果任务尚未完成,获取任务执行结果时将会阻塞。一旦执行结束,任务就不能被重启或取消(除非使用runAndReset执行计算)。FutureTask 常用来封装 Callable 和 Runnable,也可以作为一个任务提交到线程池中执行。除了作为一个独立的类之外,此类也提供了一些功能性函数供我们创建自定义 task 类使用。FutureTask 的线程安全由CAS来保证。
# 2、FutureTask类结构关系怎么样的?
可以看到,FutureTask实现了RunnableFuture接口,则RunnableFuture接口继承了Runnable接口和Future接口,所以FutureTask既能当做一个Runnable直接被Thread执行,也能作为Future用来得到Callable的计算结果。
# 3、FutureTask的线程安全是由什么保证的?
FutureTask 的线程安全由CAS来保证。
# 4、FutureTask通常会怎么用
import java.util.concurrent.*;
public class CallDemo {
public static void main(String[] args) throws ExecutionException, InterruptedException {
/**
* 第一种方式:Future + ExecutorService
* Task task = new Task();
* ExecutorService service = Executors.newCachedThreadPool();
* Future<Integer> future = service.submit(task1);
* service.shutdown();
*/
/**
* 第二种方式: FutureTask + ExecutorService
* ExecutorService executor = Executors.newCachedThreadPool();
* Task task = new Task();
* FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
* executor.submit(futureTask);
* executor.shutdown();
*/
/**
* 第三种方式:FutureTask + Thread
*/
// 2. 新建FutureTask,需要一个实现了Callable接口的类的实例作为构造函数参数
FutureTask<Integer> futureTask = new FutureTask<Integer>(new Task());
// 3. 新建Thread对象并启动
Thread thread = new Thread(futureTask);
thread.setName("Task thread");
thread.start();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("Thread [" + Thread.currentThread().getName() + "] is running");
// 4. 调用isDone()判断任务是否结束
if(!futureTask.isDone()) {
System.out.println("Task is not done");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
int result = 0;
try {
// 5. 调用get()方法获取任务结果,如果任务没有执行完成则阻塞等待
result = futureTask.get();
} catch (Exception e) {
e.printStackTrace();
}
System.out.println("result is " + result);
}
// 1. 继承Callable接口,实现call()方法,泛型参数为要返回的类型
static class Task implements Callable<Integer> {
@Override
public Integer call() throws Exception {
System.out.println("Thread [" + Thread.currentThread().getName() + "] is running");
int result = 0;
for(int i = 0; i < 100;++i) {
result += i;
}
Thread.sleep(3000);
return result;
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# 为什么要有线程池?
线程池能够对线程进行统一分配,调优和监控:
- 降低资源消耗(线程无限制地创建,然后使用完毕后销毁)
- 提高响应速度(无须创建线程)
- 提高线程的可管理性
# Java是实现和管理线程池有哪些方式
从JDK 5开始,把工作单元与执行机制分离开来,工作单元包括Runnable和Callable,而执行机制由Executor框架提供。
# 1、WorkerThread
public class WorkerThread implements Runnable {
private String command;
public WorkerThread(String s){
this.command=s;
}
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+" Start. Command = "+command);
processCommand();
System.out.println(Thread.currentThread().getName()+" End.");
}
private void processCommand() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
@Override
public String toString(){
return this.command;
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# 2、SimpleThreadPool
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class SimpleThreadPool {
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(5);
for (int i = 0; i < 10; i++) {
Runnable worker = new WorkerThread("" + i);
executor.execute(worker);
}
executor.shutdown(); // This will make the executor accept no new threads and finish all existing threads in the queue
while (!executor.isTerminated()) { // Wait until all threads are finish,and also you can use "executor.awaitTermination();" to wait
}
System.out.println("Finished all threads");
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
程序中我们创建了固定大小为五个工作线程的线程池。然后分配给线程池十个工作,因为线程池大小为五,它将启动五个工作线程先处理五个工作,其他的工作则处于等待状态,一旦有工作完成,空闲下来工作线程就会捡取等待队列里的其他工作进行执行。
这里是以上程序的输出。
pool-1-thread-2 Start. Command = 1
pool-1-thread-4 Start. Command = 3
pool-1-thread-1 Start. Command = 0
pool-1-thread-3 Start. Command = 2
pool-1-thread-5 Start. Command = 4
pool-1-thread-4 End.
pool-1-thread-5 End.
pool-1-thread-1 End.
pool-1-thread-3 End.
pool-1-thread-3 Start. Command = 8
pool-1-thread-2 End.
pool-1-thread-2 Start. Command = 9
pool-1-thread-1 Start. Command = 7
pool-1-thread-5 Start. Command = 6
pool-1-thread-4 Start. Command = 5
pool-1-thread-2 End.
pool-1-thread-4 End.
pool-1-thread-3 End.
pool-1-thread-5 End.
pool-1-thread-1 End.
Finished all threads
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
输出表明线程池中至始至终只有五个名为 "pool-1-thread-1" 到 "pool-1-thread-5" 的五个线程,这五个线程不随着工作的完成而消亡,会一直存在,并负责执行分配给线程池的任务,直到线程池消亡。
Executors 类提供了使用了 ThreadPoolExecutor 的简单的 ExecutorService 实现,但是 ThreadPoolExecutor 提供的功能远不止于此。我们可以在创建 ThreadPoolExecutor 实例时指定活动线程的数量,我们也可以限制线程池的大小并且创建我们自己的 RejectedExecutionHandler 实现来处理不能适应工作队列的工作。
这里是我们自定义的 RejectedExecutionHandler 接口的实现。
# 3、RejectedExecutionHandlerImpl.java
import java.util.concurrent.RejectedExecutionHandler;
import java.util.concurrent.ThreadPoolExecutor;
public class RejectedExecutionHandlerImpl implements RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
System.out.println(r.toString() + " is rejected");
}
}
2
3
4
5
6
7
8
9
10
11
ThreadPoolExecutor 提供了一些方法,我们可以使用这些方法来查询 executor 的当前状态,线程池大小,活动线程数量以及任务数量。因此我是用来一个监控线程在特定的时间间隔内打印 executor 信息。
# 4、MyMonitorThread.java
import java.util.concurrent.ThreadPoolExecutor;
public class MyMonitorThread implements Runnable
{
private ThreadPoolExecutor executor;
private int seconds;
private boolean run=true;
public MyMonitorThread(ThreadPoolExecutor executor, int delay)
{
this.executor = executor;
this.seconds=delay;
}
public void shutdown(){
this.run=false;
}
@Override
public void run()
{
while(run){
System.out.println(
String.format("[monitor] [%d/%d] Active: %d, Completed: %d, Task: %d, isShutdown: %s, isTerminated: %s",
this.executor.getPoolSize(),
this.executor.getCorePoolSize(),
this.executor.getActiveCount(),
this.executor.getCompletedTaskCount(),
this.executor.getTaskCount(),
this.executor.isShutdown(),
this.executor.isTerminated()));
try {
Thread.sleep(seconds*1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
这里是使用 ThreadPoolExecutor 的线程池实现例子。
# 5、WorkerPool.java
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
public class WorkerPool {
public static void main(String args[]) throws InterruptedException{
//RejectedExecutionHandler implementation
RejectedExecutionHandlerImpl rejectionHandler = new RejectedExecutionHandlerImpl();
//Get the ThreadFactory implementation to use
ThreadFactory threadFactory = Executors.defaultThreadFactory();
//creating the ThreadPoolExecutor
ThreadPoolExecutor executorPool = new ThreadPoolExecutor(2, 4, 10, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(2), threadFactory, rejectionHandler);
//start the monitoring thread
MyMonitorThread monitor = new MyMonitorThread(executorPool, 3);
Thread monitorThread = new Thread(monitor);
monitorThread.start();
//submit work to the thread pool
for(int i=0; i<10; i++){
executorPool.execute(new WorkerThread("cmd"+i));
}
Thread.sleep(30000);
//shut down the pool
executorPool.shutdown();
//shut down the monitor thread
Thread.sleep(5000);
monitor.shutdown();
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
注意在初始化 ThreadPoolExecutor 时,我们保持初始池大小为 2,最大池大小为 4 而工作队列大小为 2。因此如果已经有四个正在执行的任务而此时分配来更多任务的话,工作队列将仅仅保留他们(新任务)中的两个,其他的将会被 RejectedExecutionHandlerImpl 处理。
上面程序的输出可以证实以上观点。
pool-1-thread-1 Start. Command = cmd0
pool-1-thread-4 Start. Command = cmd5
cmd6 is rejected
pool-1-thread-3 Start. Command = cmd4
pool-1-thread-2 Start. Command = cmd1
cmd7 is rejected
cmd8 is rejected
cmd9 is rejected
[monitor] [0/2] Active: 4, Completed: 0, Task: 6, isShutdown: false, isTerminated: false
[monitor] [4/2] Active: 4, Completed: 0, Task: 6, isShutdown: false, isTerminated: false
pool-1-thread-4 End.
pool-1-thread-1 End.
pool-1-thread-2 End.
pool-1-thread-3 End.
pool-1-thread-1 Start. Command = cmd3
pool-1-thread-4 Start. Command = cmd2
[monitor] [4/2] Active: 2, Completed: 4, Task: 6, isShutdown: false, isTerminated: false
[monitor] [4/2] Active: 2, Completed: 4, Task: 6, isShutdown: false, isTerminated: false
pool-1-thread-1 End.
pool-1-thread-4 End.
[monitor] [4/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [0/2] Active: 0, Completed: 6, Task: 6, isShutdown: true, isTerminated: true
[monitor] [0/2] Active: 0, Completed: 6, Task: 6, isShutdown: true, isTerminated: true
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
注意 executor 的活动任务、完成任务以及所有完成任务,这些数量上的变化。我们可以调用 shutdown() 方法来结束所有提交的任务并终止线程池。
# ThreadPoolExecutor
# 1、ThreadPoolExecutor的原理
其实java线程池的实现原理很简单,说白了就是一个线程集合workerSet和一个阻塞队列workQueue。当用户向线程池提交一个任务(也就是线程)时,线程池会先将任务放入workQueue中。workerSet中的线程会不断的从workQueue中获取线程然后执行。当workQueue中没有任务的时候,worker就会阻塞,直到队列中有任务了就取出来继续执行。
当一个任务提交至线程池之后:
- 线程池首先当前运行的线程数量是否少于corePoolSize。如果是,则创建一个新的工作线程来执行任务。如果都在执行任务,则进入2.
- 判断BlockingQueue是否已经满了,倘若还没有满,则将线程放入BlockingQueue。否则进入3.
- 如果创建一个新的工作线程将使当前运行的线程数量超过maximumPoolSize,则交给RejectedExecutionHandler来处理任务。
当ThreadPoolExecutor创建新线程时,通过CAS来更新线程池的状态ctl.
# 2、ThreadPoolExecutor有哪些核心的配置参数
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)
2
3
4
5
6
corePoolSize线程池中的核心线程数,当提交一个任务时,线程池创建一个新线程执行任务,直到当前线程数等于corePoolSize, 即使有其他空闲线程能够执行新来的任务, 也会继续创建线程;如果当前线程数为corePoolSize,继续提交的任务被保存到阻塞队列中,等待被执行;如果执行了线程池的prestartAllCoreThreads()方法,线程池会提前创建并启动所有核心线程。workQueue用来保存等待被执行的任务的阻塞队列. 在JDK中提供了如下阻塞队列: 具体可以参考JUC 集合: BlockQueue详解ArrayBlockingQueue: 基于数组结构的有界阻塞队列,按FIFO排序任务;LinkedBlockingQueue: 基于链表结构的阻塞队列,按FIFO排序任务,吞吐量通常要高于ArrayBlockingQueue;SynchronousQueue: 一个不存储元素的阻塞队列,每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue;PriorityBlockingQueue: 具有优先级的无界阻塞队列;
LinkedBlockingQueue比ArrayBlockingQueue在插入删除节点性能方面更优,但是二者在put(), take()任务的时均需要加锁,SynchronousQueue使用无锁算法,根据节点的状态判断执行,而不需要用到锁,其核心是Transfer.transfer()。
maximumPoolSize线程池中允许的最大线程数。如果当前阻塞队列满了,且继续提交任务,则创建新的线程执行任务,前提是当前线程数小于maximumPoolSize;当阻塞队列是无界队列, 则maximumPoolSize则不起作用, 因为无法提交至核心线程池的线程会一直持续地放入workQueue。keepAliveTime线程空闲时的存活时间,即当线程没有任务执行时,该线程继续存活的时间;默认情况下,该参数只在线程数大于corePoolSize时才有用, 超过这个时间的空闲线程将被终止;unitkeepAliveTime的单位。threadFactory创建线程的工厂,通过自定义的线程工厂可以给每个新建的线程设置一个具有识别度的线程名。默认为DefaultThreadFactory。handler线程池的饱和策略,当阻塞队列满了,且没有空闲的工作线程,如果继续提交任务,必须采取一种策略处理该任务,线程池提供了4种策略:AbortPolicy: 直接抛出异常,默认策略;CallerRunsPolicy: 用调用者所在的线程来执行任务;DiscardOldestPolicy: 丢弃阻塞队列中靠最前的任务,并执行当前任务;DiscardPolicy: 直接丢弃任务;
当然也可以根据应用场景实现RejectedExecutionHandler接口,自定义饱和策略,如记录日志或持久化存储不能处理的任务。
# 3、ThreadPoolExecutor可以创建哪是哪三种线程池呢?
# a、newFixedThreadPool
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
2
3
4
5
线程池的线程数量达corePoolSize后,即使线程池没有可执行任务时,也不会释放线程。
FixedThreadPool的工作队列为无界队列LinkedBlockingQueue(队列容量为Integer.MAX_VALUE), 这会导致以下问题:
- 线程池里的线程数量不超过corePoolSize,这导致了maximumPoolSize和keepAliveTime将会是个无用参数
- 由于使用了无界队列, 所以FixedThreadPool永远不会拒绝, 即饱和策略失效
# b、newSingleThreadExecutor
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
2
3
4
5
6
初始化的线程池中只有一个线程,如果该线程异常结束,会重新创建一个新的线程继续执行任务,唯一的线程可以保证所提交任务的顺序执行.
由于使用了无界队列, 所以SingleThreadPool永远不会拒绝, 即饱和策略失效
# c、newCachedThreadPool
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
2
3
4
5
线程池的线程数可达到Integer.MAX_VALUE,即2147483647,内部使用SynchronousQueue作为阻塞队列; 和newFixedThreadPool创建的线程池不同,newCachedThreadPool在没有任务执行时,当线程的空闲时间超过keepAliveTime,会自动释放线程资源,当提交新任务时,如果没有空闲线程,则创建新线程执行任务,会导致一定的系统开销; 执行过程与前两种稍微不同:
- 主线程调用SynchronousQueue的offer()方法放入task, 倘若此时线程池中有空闲的线程尝试读取 SynchronousQueue的task, 即调用了SynchronousQueue的poll(), 那么主线程将该task交给空闲线程. 否则执行(2)
- 当线程池为空或者没有空闲的线程, 则创建新的线程执行任务.
- 执行完任务的线程倘若在60s内仍空闲, 则会被终止. 因此长时间空闲的CachedThreadPool不会持有任何线程资源.
# 4、当队列满了并且worker的数量达到maxSize的时候,会怎么样?
当队列满了并且worker的数量达到maxSize的时候,执行具体的拒绝策略
private volatile RejectedExecutionHandler handler;
# 5、有哪些RejectedExecutionHandler策略? 默认是什么策略?
# a、AbortPolicy,(默认)
该策略是线程池的默认策略。使用该策略时,如果线程池队列满了丢掉这个任务并且抛出RejectedExecutionException异常。 源码如下:
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
//不做任何处理,直接抛出异常
throw new RejectedExecutionException("xxx");
}
2
3
4
# b、DiscardPolicy
这个策略和AbortPolicy的slient版本,如果线程池队列满了,会直接丢掉这个任务并且不会有任何异常。 源码如下:
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
//就是一个空的方法
}
2
3
# c、DiscardOldestPolicy
这个策略从字面上也很好理解,丢弃最老的。也就是说如果队列满了,会将最早进入队列的任务删掉腾出空间,再尝试加入队列。 因为队列是队尾进,队头出,所以队头元素是最老的,因此每次都是移除对头元素后再尝试入队。 源码如下:
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
//移除队头元素
e.getQueue().poll();
//再尝试入队
e.execute(r);
}
}
2
3
4
5
6
7
8
# d、CallerRunsPolicy
使用此策略,如果添加到线程池失败,那么主线程会自己去执行该任务,不会等待线程池中的线程去执行。就像是个急脾气的人,我等不到别人来做这件事就干脆自己干。 源码如下:
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
//直接执行run方法
r.run();
}
}
2
3
4
5
6
# 线程池的任务执行机制
execute –> addWorker –>runworker (getTask)
- 线程池的工作线程通过Woker类实现,在ReentrantLock锁的保证下,把Woker实例插入到HashSet后,并启动Woker中的线程。
- 从Woker类的构造方法实现可以发现: 线程工厂在创建线程thread时,将Woker实例本身this作为参数传入,当执行start方法启动线程thread时,本质是执行了Worker的runWorker方法。
- firstTask执行完成之后,通过getTask方法从阻塞队列中获取等待的任务,如果队列中没有任务,getTask方法会被阻塞并挂起,不会占用cpu资源;
# 线程池中任务是如何提交

- submit任务,等待线程池execute
- 执行FutureTask类的get方法时,会把主线程封装成WaitNode节点并保存在waiters链表中, 并阻塞等待运行结果;
- FutureTask任务执行完成后,通过UNSAFE设置waiters相应的waitNode为null,并通过LockSupport类unpark方法唤醒主线程;
public class Test{
public static void main(String[] args) {
ExecutorService es = Executors.newCachedThreadPool();
Future<String> future = es.submit(new Callable<String>() {
@Override
public String call() throws Exception {
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "future result";
}
});
try {
String result = future.get();
System.out.println(result);
} catch (Exception e) {
e.printStackTrace();
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
在实际业务场景中,Future和Callable基本是成对出现的,Callable负责产生结果,Future负责获取结果。
- Callable接口类似于Runnable,只是Runnable没有返回值。
- Callable任务除了返回正常结果之外,如果发生异常,该异常也会被返回,即Future可以拿到异步执行任务各种结果;
- Future.get方法会导致主线程阻塞,直到Callable任务执行完成;
# 线程池中任务是如何关闭的
- shutdown
将线程池里的线程状态设置成SHUTDOWN状态, 然后中断所有没有正在执行任务的线程.
- shutdownNow
将线程池里的线程状态设置成STOP状态, 然后停止所有正在执行或暂停任务的线程. 只要调用这两个关闭方法中的任意一个, isShutDown() 返回true. 当所有任务都成功关闭了, isTerminated()返回true.
# 在配置线程池的时候需要考虑哪些配置因素
从任务的优先级,任务的执行时间长短,任务的性质(CPU密集/ IO密集),任务的依赖关系这四个角度来分析。并且近可能地使用有界的工作队列。
性质不同的任务可用使用不同规模的线程池分开处理:
- CPU密集型: 尽可能少的线程,Ncpu+1
- IO密集型: 尽可能多的线程, Ncpu*2,比如数据库连接池
- 混合型: CPU密集型的任务与IO密集型任务的执行时间差别较小,拆分为两个线程池;否则没有必要拆分。
# 如何监控线程池的状态
可以使用ThreadPoolExecutor以下方法:
getTaskCount()Returns the approximate total number of tasks that have ever been scheduled for execution.getCompletedTaskCount()Returns the approximate total number of tasks that have completed execution. 返回结果少于getTaskCount()。getLargestPoolSize()Returns the largest number of threads that have ever simultaneously been in the pool. 返回结果小于等于maximumPoolSizegetPoolSize()Returns the current number of threads in the pool.getActiveCount()Returns the approximate number of threads that are actively executing tasks.
# 为什么不允许使用Executors去创建线程池? 那么推荐怎么使用呢?
线程池不允许使用Executors去创建,而是通过ThreadPoolExecutor的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。 说明:Executors各个方法的弊端:
- newFixedThreadPool和newSingleThreadExecutor: 主要问题是堆积的请求处理队列可能会耗费非常大的内存,甚至OOM。
- newCachedThreadPool和newScheduledThreadPool: 主要问题是线程数最大数是Integer.MAX_VALUE,可能会创建数量非常多的线程,甚至OOM。
# 1、推荐方式 1
首先引入:commons-lang3包
ScheduledExecutorService executorService = new ScheduledThreadPoolExecutor(1,
new BasicThreadFactory.Builder().namingPattern("example-schedule-pool-%d").daemon(true).build());
2
# 2、推荐方式 2
首先引入:com.google.guava包
ThreadFactory namedThreadFactory = new ThreadFactoryBuilder().setNameFormat("demo-pool-%d").build();
//Common Thread Pool
ExecutorService pool = new ThreadPoolExecutor(5, 200, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());
// excute
pool.execute(()-> System.out.println(Thread.currentThread().getName()));
//gracefully shutdown
pool.shutdown();
2
3
4
5
6
7
8
9
10
# 3、推荐方式 3
spring配置线程池方式:自定义线程工厂bean需要实现ThreadFactory,可参考该接口的其它默认实现类,使用方式直接注入bean调用execute(Runnable task)方法即可
<bean id="userThreadPool" class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
<property name="corePoolSize" value="10" />
<property name="maxPoolSize" value="100" />
<property name="queueCapacity" value="2000" />
<property name="threadFactory" value= threadFactory />
<property name="rejectedExecutionHandler">
<ref local="rejectedExecutionHandler" />
</property>
</bean>
//in code
userThreadPool.execute(thread);
2
3
4
5
6
7
8
9
10
11
12
13
# ScheduledThreadPoolExecutor
# 1、ScheduledThreadPoolExecutor要解决什么样的问题
在很多业务场景中,我们可能需要周期性的运行某项任务来获取结果,比如周期数据统计,定时发送数据等。在并发包出现之前,Java 早在1.3就提供了 Timer 类(只需要了解,目前已渐渐被 ScheduledThreadPoolExecutor 代替)来适应这些业务场景。随着业务量的不断增大,我们可能需要多个工作线程运行任务来尽可能的增加产品性能,或者是需要更高的灵活性来控制和监控这些周期业务。这些都是 ScheduledThreadPoolExecutor 诞生的必然性。
# 2、ScheduledThreadPoolExecutor相比ThreadPoolExecutor有哪些特性?
ScheduledThreadPoolExecutor继承自 ThreadPoolExecutor,为任务提供延迟或周期执行,属于线程池的一种。和 ThreadPoolExecutor 相比,它还具有以下几种特性:
- 使用专门的任务类型—ScheduledFutureTask 来执行周期任务,也可以接收不需要时间调度的任务(这些任务通过 ExecutorService 来执行)。
- 使用专门的存储队列—DelayedWorkQueue 来存储任务,DelayedWorkQueue 是无界延迟队列DelayQueue 的一种。相比ThreadPoolExecutor也简化了执行机制(delayedExecute方法,后面单独分析)。
- 支持可选的run-after-shutdown参数,在池被关闭(shutdown)之后支持可选的逻辑来决定是否继续运行周期或延迟任务。并且当任务(重新)提交操作与 shutdown 操作重叠时,复查逻辑也不相同。
# 3、ScheduledThreadPoolExecutor有什么样的数据结构,核心内部类和抽象类

ScheduledThreadPoolExecutor继承自 ThreadPoolExecutor:
- 详情请参考: JUC线程池: ThreadPoolExecutor详解
ScheduledThreadPoolExecutor 内部构造了两个内部类 ScheduledFutureTask 和 DelayedWorkQueue:
ScheduledFutureTask: 继承了FutureTask,说明是一个异步运算任务;最上层分别实现了Runnable、Future、Delayed接口,说明它是一个可以延迟执行的异步运算任务。DelayedWorkQueue: 这是 ScheduledThreadPoolExecutor 为存储周期或延迟任务专门定义的一个延迟队列,继承了 AbstractQueue,为了契合 ThreadPoolExecutor 也实现了 BlockingQueue 接口。它内部只允许存储 RunnableScheduledFuture 类型的任务。与 DelayQueue 的不同之处就是它只允许存放 RunnableScheduledFuture 对象,并且自己实现了二叉堆(DelayQueue 是利用了 PriorityQueue 的二叉堆结构)。
# 4、ScheduledThreadPoolExecutor有哪两个关闭策略? 区别是什么
shutdown:在shutdown方法中调用的关闭钩子onShutdown方法,它的主要作用是在关闭线程池后取消并清除由于关闭策略不应该运行的所有任务,这里主要是根据 run-after-shutdown 参数(continueExistingPeriodicTasksAfterShutdown和executeExistingDelayedTasksAfterShutdown)来决定线程池关闭后是否关闭已经存在的任务。
showDownNow:立即关闭
# 5、ScheduledThreadPoolExecutor中scheduleAtFixedRate 和 scheduleWithFixedDelay区别是什么?
注意scheduleAtFixedRate和scheduleWithFixedDelay的区别: 乍一看两个方法一模一样,其实,在unit.toNanos这一行代码中还是有区别的。没错,scheduleAtFixedRate传的是正值,而scheduleWithFixedDelay传的则是负值,这个值就是 ScheduledFutureTask 的period属性。
# 6、为什么ThreadPoolExecutor 的调整策略却不适用于ScheduledThreadPoolExecutor?
例如: 由于 ScheduledThreadPoolExecutor 是一个固定核心线程数大小的线程池,并且使用了一个无界队列,所以调整maximumPoolSize对其没有任何影响(所以 ScheduledThreadPoolExecutor 没有提供可以调整最大线程数的构造函数,默认最大线程数固定为Integer.MAX_VALUE)。此外,设置corePoolSize为0或者设置核心线程空闲后清除(allowCoreThreadTimeOut)同样也不是一个好的策略,因为一旦周期任务到达某一次运行周期时,可能导致线程池内没有线程去处理这些任务。
# 7、Executors 提供了几种方法来构造 ScheduledThreadPoolExecutor
newScheduledThreadPool: 可指定核心线程数的线程池。
newSingleThreadScheduledExecutor: 只有一个工作线程的线程池。如果内部工作线程由于执行周期任务异常而被终止,则会新建一个线程替代它的位置。
# Fork/Join
# 1、Fork/Join主要用来解决什么样的问题
ForkJoinPool 是JDK 7加入的一个线程池类。Fork/Join 技术是分治算法(Divide-and-Conquer)的并行实现,它是一项可以获得良好的并行性能的简单且高效的设计技术。目的是为了帮助我们更好地利用多处理器带来的好处,使用所有可用的运算能力来提升应用的性能。
# 2、Fork/Join框架是在哪个JDK版本中引入的?
JDK 7
# 3、Fork/Join框架主要包含哪三个模块? 模块之间的关系是怎么样的?
Fork/Join框架主要包含三个模块:
- 任务对象:
ForkJoinTask(包括RecursiveTask、RecursiveAction和CountedCompleter) - 执行Fork/Join任务的线程:
ForkJoinWorkerThread - 线程池:
ForkJoinPool
这三者的关系是: ForkJoinPool可以通过池中的ForkJoinWorkerThread来处理ForkJoinTask任务。
# 4、ForkJoinPool类继承关系?
内部类介绍:
- ForkJoinWorkerThreadFactory: 内部线程工厂接口,用于创建工作线程ForkJoinWorkerThread
- DefaultForkJoinWorkerThreadFactory: ForkJoinWorkerThreadFactory 的默认实现类
- InnocuousForkJoinWorkerThreadFactory: 实现了 ForkJoinWorkerThreadFactory,无许可线程工厂,当系统变量中有系统安全管理相关属性时,默认使用这个工厂创建工作线程。
- EmptyTask: 内部占位类,用于替换队列中 join 的任务。
- ManagedBlocker: 为 ForkJoinPool 中的任务提供扩展管理并行数的接口,一般用在可能会阻塞的任务(如在 Phaser 中用于等待 phase 到下一个generation)。
- WorkQueue: ForkJoinPool 的核心数据结构,本质上是work-stealing 模式的双端任务队列,内部存放 ForkJoinTask 对象任务,使用 @Contented 注解修饰防止伪共享。
- 工作线程在运行中产生新的任务(通常是因为调用了 fork())时,此时可以把 WorkQueue 的数据结构视为一个栈,新的任务会放入栈顶(top 位);工作线程在处理自己工作队列的任务时,按照 LIFO 的顺序。
- 工作线程在处理自己的工作队列同时,会尝试窃取一个任务(可能是来自于刚刚提交到 pool 的任务,或是来自于其他工作线程的队列任务),此时可以把 WorkQueue 的数据结构视为一个 FIFO 的队列,窃取的任务位于其他线程的工作队列的队首(base位)。
- 伪共享状态: 缓存系统中是以缓存行(cache line)为单位存储的。缓存行是2的整数幂个连续字节,一般为32-256个字节。最常见的缓存行大小是64个字节。当多线程修改互相独立的变量时,如果这些变量共享同一个缓存行,就会无意中影响彼此的性能,这就是伪共享。
# 5、ForkJoinTask抽象类继承关系
ForkJoinTask 实现了 Future 接口,说明它也是一个可取消的异步运算任务,实际上ForkJoinTask 是 Future 的轻量级实现,主要用在纯粹是计算的函数式任务或者操作完全独立的对象计算任务。fork 是主运行方法,用于异步执行;而 join 方法在任务结果计算完毕之后才会运行,用来合并或返回计算结果。 其内部类都比较简单,ExceptionNode 是用于存储任务执行期间的异常信息的单向链表;其余四个类是为 Runnable/Callable 任务提供的适配器类,用于把 Runnable/Callable 转化为 ForkJoinTask 类型的任务(因为 ForkJoinPool 只可以运行 ForkJoinTask 类型的任务)。
# 6、整个Fork/Join 框架的执行流程/运行机制是怎么样的?
首先介绍任务的提交流程 - 外部任务(external/submissions task)提交
然后介绍任务的提交流程 - 子任务(Worker task)提交
再分析任务的执行过程(ForkJoinWorkerThread.run()到ForkJoinTask.doExec()这一部分);
最后介绍任务的结果获取(ForkJoinTask.join()和ForkJoinTask.invoke())
# 7、具体阐述Fork/Join的分治思想和work-stealing 实现方式?
# a、分治算法(Divide-and-Conquer)
分治算法(Divide-and-Conquer)把任务递归的拆分为各个子任务,这样可以更好的利用系统资源,尽可能的使用所有可用的计算能力来提升应用性能。首先看一下 Fork/Join 框架的任务运行机制:
# b、工作窃取算法(work-stealing)
work-stealing(工作窃取)算法: 线程池内的所有工作线程都尝试找到并执行已经提交的任务,或者是被其他活动任务创建的子任务(如果不存在就阻塞等待)。这种特性使得 ForkJoinPool 在运行多个可以产生子任务的任务,或者是提交的许多小任务时效率更高。尤其是构建异步模型的 ForkJoinPool 时,对不需要合并(join)的事件类型任务也非常适用。
在 ForkJoinPool 中,线程池中每个工作线程(ForkJoinWorkerThread)都对应一个任务队列(WorkQueue),工作线程优先处理来自自身队列的任务(LIFO或FIFO顺序,参数 mode 决定),然后以FIFO的顺序随机窃取其他队列中的任务。
具体思路如下:
- 每个线程都有自己的一个WorkQueue,该工作队列是一个双端队列。
- 队列支持三个功能push、pop、poll
- push/pop只能被队列的所有者线程调用,而poll可以被其他线程调用。
- 划分的子任务调用fork时,都会被push到自己的队列中。
- 默认情况下,工作线程从自己的双端队列获出任务并执行。
- 当自己的队列为空时,线程随机从另一个线程的队列末尾调用poll方法窃取任务。

# 8、有哪些JDK源码中使用了Fork/Join思想?
我们常用的数组工具类 Arrays 在JDK 8之后新增的并行排序方法(parallelSort)就运用了 ForkJoinPool 的特性,还有 ConcurrentHashMap 在JDK 8之后添加的函数式方法(如forEach等)也有运用。
# 9、如何使用Executors工具类创建ForkJoinPool?
Java8在Executors工具类中新增了两个工厂方法:
// parallelism定义并行级别
public static ExecutorService newWorkStealingPool(int parallelism);
// 默认并行级别为JVM可用的处理器个数
// Runtime.getRuntime().availableProcessors()
public static ExecutorService newWorkStealingPool();
2
3
4
5
# 10、写一个例子: 用ForkJoin方式实现1+2+3+...+100000?
public class Test {
static final class SumTask extends RecursiveTask<Integer> {
private static final long serialVersionUID = 1L;
final int start; //开始计算的数
final int end; //最后计算的数
SumTask(int start, int end) {
this.start = start;
this.end = end;
}
@Override
protected Integer compute() {
//如果计算量小于1000,那么分配一个线程执行if中的代码块,并返回执行结果
if(end - start < 1000) {
System.out.println(Thread.currentThread().getName() + " 开始执行: " + start + "-" + end);
int sum = 0;
for(int i = start; i <= end; i++)
sum += i;
return sum;
}
//如果计算量大于1000,那么拆分为两个任务
SumTask task1 = new SumTask(start, (start + end) / 2);
SumTask task2 = new SumTask((start + end) / 2 + 1, end);
//执行任务
task1.fork();
task2.fork();
//获取任务执行的结果
return task1.join() + task2.join();
}
}
public static void main(String[] args) throws InterruptedException, ExecutionException {
ForkJoinPool pool = new ForkJoinPool();
ForkJoinTask<Integer> task = new SumTask(1, 10000);
pool.submit(task);
System.out.println(task.get());
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
执行结果
ForkJoinPool-1-worker-1 开始执行: 1-625
ForkJoinPool-1-worker-7 开始执行: 6251-6875
ForkJoinPool-1-worker-6 开始执行: 5626-6250
ForkJoinPool-1-worker-10 开始执行: 3751-4375
ForkJoinPool-1-worker-13 开始执行: 2501-3125
ForkJoinPool-1-worker-8 开始执行: 626-1250
ForkJoinPool-1-worker-11 开始执行: 5001-5625
ForkJoinPool-1-worker-3 开始执行: 7501-8125
ForkJoinPool-1-worker-14 开始执行: 1251-1875
ForkJoinPool-1-worker-4 开始执行: 9376-10000
ForkJoinPool-1-worker-8 开始执行: 8126-8750
ForkJoinPool-1-worker-0 开始执行: 1876-2500
ForkJoinPool-1-worker-12 开始执行: 4376-5000
ForkJoinPool-1-worker-5 开始执行: 8751-9375
ForkJoinPool-1-worker-7 开始执行: 6876-7500
ForkJoinPool-1-worker-1 开始执行: 3126-3750
50005000
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 11、Fork/Join在使用时有哪些注意事项? 结合JDK中的斐波那契数列实例具体说明。
斐波那契数列: 1、1、2、3、5、8、13、21、34、…… 公式 : F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)
public static void main(String[] args) {
ForkJoinPool forkJoinPool = new ForkJoinPool(4); // 最大并发数4
Fibonacci fibonacci = new Fibonacci(20);
long startTime = System.currentTimeMillis();
Integer result = forkJoinPool.invoke(fibonacci);
long endTime = System.currentTimeMillis();
System.out.println("Fork/join sum: " + result + " in " + (endTime - startTime) + " ms.");
}
//以下为官方API文档示例
static class Fibonacci extends RecursiveTask<Integer> {
final int n;
Fibonacci(int n) {
this.n = n;
}
@Override
protected Integer compute() {
if (n <= 1) {
return n;
}
Fibonacci f1 = new Fibonacci(n - 1);
f1.fork();
Fibonacci f2 = new Fibonacci(n - 2);
return f2.compute() + f1.join();
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
当然你也可以两个任务都fork,要注意的是两个任务都fork的情况,必须按照f1.fork(),f2.fork(), f2.join(),f1.join()这样的顺序,不然有性能问题,详见上面注意事项中的说明。
官方API文档是这样写到的,所以平日用invokeAll就好了。invokeAll会把传入的任务的第一个交给当前线程来执行,其他的任务都fork加入工作队列,这样等于利用当前线程也执行任务了。
{
// ...
Fibonacci f1 = new Fibonacci(n - 1);
Fibonacci f2 = new Fibonacci(n - 2);
invokeAll(f1,f2);
return f2.join() + f1.join();
}
public static void invokeAll(ForkJoinTask<?>... tasks) {
Throwable ex = null;
int last = tasks.length - 1;
for (int i = last; i >= 0; --i) {
ForkJoinTask<?> t = tasks[i];
if (t == null) {
if (ex == null)
ex = new NullPointerException();
}
else if (i != 0) //除了第一个都fork
t.fork();
else if (t.doInvoke() < NORMAL && ex == null) //留一个自己执行
ex = t.getException();
}
for (int i = 1; i <= last; ++i) {
ForkJoinTask<?> t = tasks[i];
if (t != null) {
if (ex != null)
t.cancel(false);
else if (t.doJoin() < NORMAL)
ex = t.getException();
}
}
if (ex != null)
rethrow(ex);
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34