一致性算法
# 1、什么是分布式系统的副本一致性?有哪些?
分布式系统通过副本控制协议,使得从系统外部读取系统内部各个副本的数据在一定的约束条件下相同,称之为副本一致性(consistency)。副本一致性是针对分布式系统而言的,不是针对某一个副本而言。
强一致性(strong consistency):任何时刻任何用户或节点都可以读到最近一次成功更新的副本数据。强一致性是程度最高的一致性要求,也是实践中最难以实现的一致性。
单调一致性(monotonic consistency):任何时刻,任何用户一旦读到某个数据在某次更新后的值,这个用户不会再读到比这个值更旧的值。单调一致性是弱于强一致性却非常实用的一种一致性级别。因为通常来说,用户只关心从己方视角观察到的一致性,而不会关注其他用户的一致性情况。
会话一致性(session consistency):任何用户在某一次会话内一旦读到某个数据在某次更新后的值,这个用户在这次会话过程中不会再读到比这个值更旧的值。会话一致性通过引入会话的概念,在单调一致性的基础上进一步放松约束,会话一致性只保证单个用户单次会话内数据的单调修改,对于不同用户间的一致性和同一用户不同会话间的一致性没有保障。实践中有许多机制正好对应会话的概念,例如php 中的session 概念。
最终一致性(eventual consistency):最终一致性要求一旦更新成功,各个副本上的数据最终将达 到完全一致的状态,但达到完全一致状态所需要的时间不能保障。对于最终一致性系统而言,一个用户只要始终读取某一个副本的数据,则可以实现类似单调一致性的效果,但一旦用户更换读取的副本,则无法保障任何一致性。
弱一致性(week consistency):一旦某个更新成功,用户无法在一个确定时间内读到这次更新的值,且即使在某个副本上读到了新的值,也不能保证在其他副本上可以读到新的值。弱一致性系统一般很难在实际中使用,使用弱一致性系统需要应用方做更多的工作从而使得系统可用。
# 2、在分布式系统中有哪些常见的一致性算法?
- 分布式算法 - 一致性Hash算法
- 一致性Hash算法是个经典算法,Hash环的引入是为解决
单调性(Monotonicity)的问题;虚拟节点的引入是为了解决平衡性(Balance)问题
- 一致性Hash算法是个经典算法,Hash环的引入是为解决
- 分布式算法 - Paxos算法
- Paxos算法是Lamport宗师提出的一种基于消息传递的分布式一致性算法,使其获得2013年图灵奖。自Paxos问世以来就持续垄断了分布式一致性算法,Paxos这个名词几乎等同于分布式一致性, 很多分布式一致性算法都由Paxos演变而来
- 分布式算法 - Raft算法
- Paxos是出了名的难懂,而Raft正是为了探索一种更易于理解的一致性算法而产生的。它的首要设计目的就是易于理解,所以在选主的冲突处理等方式上它都选择了非常简单明了的解决方案
- 分布式算法 - ZAB算法
- ZAB 协议全称:Zookeeper Atomic Broadcast(Zookeeper 原子广播协议), 它应该是所有一致性协议中生产环境中应用最多的了。为什么呢?因为他是为 Zookeeper 设计的分布式一致性协议!
# 3、谈谈你对一致性hash算法的理解?
判定哈希算法好坏的四个定义:
平衡性(Balance): 平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。单调性(Monotonicity): 单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。分散性(Spread): 在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。负载(Load): 负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同 的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。

# 4、什么是Paxos算法? 如何实现的?
Paxos算法是Lamport宗师提出的一种基于消息传递的分布式一致性算法,使其获得2013年图灵奖。
- 三个角色? 可以理解为人大代表(Proposer)在人大向其它代表(Acceptors)提案,通过后让老百姓(Learner)落实
Paxos将系统中的角色分为提议者 (Proposer),决策者 (Acceptor),和最终决策学习者 (Learner):
Proposer: 提出提案 (Proposal)。Proposal信息包括提案编号 (Proposal ID) 和提议的值 (Value)。Acceptor: 参与决策,回应Proposers的提案。收到Proposal后可以接受提案,若Proposal获得多数Acceptors的接受,则称该Proposal被批准。Learner: 不参与决策,从Proposers/Acceptors学习最新达成一致的提案(Value)。
在多副本状态机中,每个副本同时具有Proposer、Acceptor、Learner三种角色。

- 基于消息传递的3个阶段

- 第一阶段: Prepare阶段;Proposer向Acceptors发出Prepare请求,Acceptors针对收到的Prepare请求进行Promise承诺。
Prepare: Proposer生成全局唯一且递增的Proposal ID (可使用时间戳加Server ID),向所有Acceptors发送Prepare请求,这里无需携带提案内容,只携带Proposal ID即可。Promise: Acceptors收到Prepare请求后,做出“两个承诺,一个应答”。- 承诺1: 不再接受Proposal ID小于等于(注意: 这里是<= )当前请求的Prepare请求;
- 承诺2: 不再接受Proposal ID小于(注意: 这里是< )当前请求的Propose请求;
- 应答: 不违背以前作出的承诺下,回复已经Accept过的提案中Proposal ID最大的那个提案的Value和Proposal ID,没有则返回空值。
- 第二阶段: Accept阶段 ; Proposer收到多数Acceptors承诺的Promise后,向Acceptors发出Propose请求,Acceptors针对收到的Propose请求进行Accept处理。
Propose: Proposer 收到多数Acceptors的Promise应答后,从应答中选择Proposal ID最大的提案的Value,作为本次要发起的提案。如果所有应答的提案Value均为空值,则可以自己随意决定提案Value。然后携带当前Proposal ID,向所有Acceptors发送Propose请求。Accept: Acceptor收到Propose请求后,在不违背自己之前作出的承诺下,接受并持久化当前Proposal ID和提案Value。
- 第三阶段: Learn阶段; Proposer在收到多数Acceptors的Accept之后,标志着本次Accept成功,决议形成,将形成的决议发送给所有Learners。
# 5、什么是Raft算法?
不同于Paxos算法直接从分布式一致性问题出发推导出来,Raft算法则是从多副本状态机的角度提出。Raft实现了和Paxos相同的功能,它将一致性分解为多个子问题: Leader选举(Leader election)、日志同步(Log replication)、安全性(Safety)、日志压缩(Log compaction)、成员变更(Membership change)等。同时,Raft算法使用了更强的假设来减少了需要考虑的状态,使之变的易于理解和实现。
- 三个角色
Raft将系统中的角色分为领导者(Leader)、跟从者(Follower)和候选人(Candidate):
Leader: 接受客户端请求,并向Follower同步请求日志,当日志同步到大多数节点上后告诉Follower提交日志。Follower: 接受并持久化Leader同步的日志,在Leader告之日志可以提交之后,提交日志。Candidate: Leader选举过程中的临时角色。
Raft要求系统在任意时刻最多只有一个Leader,正常工作期间只有Leader和Followers。
- 以子问题Leader选举为例?
Raft 使用心跳(heartbeat)触发Leader选举。当服务器启动时,初始化为Follower。Leader向所有Followers周期性发送heartbeat。如果Follower在选举超时时间内没有收到Leader的heartbeat,就会等待一段随机的时间后发起一次Leader选举。
Follower将其当前term加一然后转换为Candidate。它首先给自己投票并且给集群中的其他服务器发送 RequestVote RPC (RPC细节参见八、Raft算法总结)。结果有以下三种情况:
- 赢得了多数的选票,成功选举为Leader;
- 收到了Leader的消息,表示有其它服务器已经抢先当选了Leader;
- 没有服务器赢得多数的选票,Leader选举失败,等待选举时间超时后发起下一次选举。

选举出Leader后,Leader通过定期向所有Followers发送心跳信息维持其统治。若Follower一段时间未收到Leader的心跳则认为Leader可能已经挂了,再次发起Leader选举过程。